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D I F F R A C T I O N  O F  A S T R O N G  S H O C K  W A V E  O N  A 

C Y L I N D E R  WITH A T I M E - V A R Y I N G  R A D I U S  

V. A. Pavlov UDC 534.222.2 

Problems of the diffraction of shock waves have been urgent until receraty. Whithem [1, 2] suggested an approximate 

theory for describing strong, non-one-dimensional shocks based on a "rule of characteristic curves" using nonlinear, orthogonal 
ray coordinates. The author herself [2] acknowledged that "... possibly the most severe test of this theory was its application 

to diffraction on a round cylinder, which was carried out by Bryson and Gross [3]." Mach reflection (the formation of three 

shocks and a contact discontinuity) was investigated in [3] and it was shown that a satisfactory description of the Mach stem 
in terms of the method of [1, 2] is obtained when the influence of the reflected wave and the contact discontinuity wave is 
neglected. 

In the present paper we generalize the problem of [3] to the case of a cylinder whose radius varies fairly slowly with 
time. Let r ~ a(t) be the equation for the surface of the cylinder (t is time), the axis of symmetry of which is oriented along 
the z vector. The primary (incident) strong shock is assumed to move at a velocity u 0 = uoe x ~ const ( [ e x I = 1, u 0 >> c, 
c being the speed of sound). We solve the problem in a local Cartesian coordinate system (below k is marked by a prime), 

associated with the midpoint of the Mach stem [the point N(t) in Fig. 1]. In this system the mutual velocity of the shock and 
the point N is 

u S ( t ,  = - v o ( t ,  (1) 

where vo = ~ t  { ( - e x  c6s~fl + % sin qa)[a(t)+ �89 b(t,~p)]}; ~ is the polar angle; b = 2(NT)is the length of the stem (Tis 

the coordinate of the end of the stem in the x, y coordinate system). In our approximation we assume that the Math stem is 

straight and is oriented along a radius. In the primed coordinate system the angle Qo(t, ~) between the normal to the shock 
front and the x axis is found from the equation 

cos = + , o ( t )  cos + , o  cos + vo s in:  

The description is tied in to the local coordinate system. We will be interested only in the situation in which the shock 
wave front has reached the point N. So for t in (1) we take the time that the front "encounters" the point N, 

' = ( R o -  [a(~) + l b ( t ,~ ) tg~ l }uo l  (2) 

[R 0 = const > (a + b) is the distance from the incident front to the origin of coordinates (the point O in Fig. 1) at the time 
s t = 0]. Equation (2) serves for determining t = t(~), and one obtains a representation of u o as a function of the angle ~,: 

= uG(t (v) ,  v )  = 

We consider only the case of slow time variation of the cylinder's radius a(t). We confine ourselves to the situation 
in which ] v o ] << Uo, so the function ~ ( t ,  ~) will vary slowly with respect to the first argument. 
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Fig. 1 

We introduce an orthogonal nonlinear system of ray coordinates ~x', fl', associated with the point N(t) at the shock wave 
front (cx .I. fl): 

(M'da ' )  2 + ( A ' d f f )  2 = (dx)  2 + (dy)  2. (3) 

Here M' = U'Co t is the Mach number; u' is the velocity of the shock front; c o is the linear speed of sound; A' is the 
dimensionless cross-sectional area of the ray tube. 

The representation A t' = b a o  1, a o - a(O), is valid for the Math stem, while for the incident shock wave the area 
A~ corresponds to the length of the primary shock front between the point T(t) (see Fig. 1) and the x axis: 

A~o = ao l  ( a + b) sin qo(cos Q~)-1. 

In irregular waveguides and, in particular, in ray tubes of variable cross section there is a relationship between A' and 
M' for strong shocks [2]: 

! ! --1 AI (Ao)  ~ , n , -,~ = (Mo) ( i l )  , n 1 + 27 -1 + [27(7 1)-1] 1/2 

(qr is the ratio of specific heats). 
For the or',/8' coordinate system satisfying the condition (3), the following eikonal equation is valid: 

(4) 

IV'a'l = (M') -1. (5) 

Rays associated with the Math stem are described by the equations 

Oxl ' O Y l  = sin Q~, (Mi ) - I  ~ = c ~  (Mi ) - I  0a '  

where QI' is the angle between the vectors u l' and x. 
In the transition from the primary (incident) wave to the secondary wave (its front coincides with the Math stem), a 

bend occurs in the shock front. This corresponds to the fact that the ray vector ~x' changes abruptly to conserve the absolute 
value I cx' [ = const: 

a i = a~ ~ [a - (a + b) coscp](M~ cos Q~) -1, 

M~ = Mo[(1 + VoUo 1 cos qo) 2 + (VoUo ~ sin q~)2]t/2. 

Equation (5) is used in the approximation 
~ a  ! 

(a l ) -x  -07 ~ (M')-I (6) 

(R t' is the radius vector of points on the Mach stem). In the vicinity of the point N(t) we have R I' = a + lab. Equations (4) 
and ~6) consist of a closed system that reduces to a differential equation for the size bit(9), 9] of the Math stem: 

b = (~ + b)(sin V)"+~[Z + ("o sin ~y(Uo + ~'o cos ~)-;]~/; II(b,,,, ~). (7) 
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Here 

1 --1 n 
+ + 

The boundary condition for the function b in Eq. (7) has the form b[t(0), 0] = 0. The function II varies slowly compared with 

the factor (sin ~)n + I in (7). For a = a 0 = const and ~ -o 0 we have H = 1. The function b = bo(~) has been calculated 

in [3] for a = a 0 and ~ _< 60 ~ and there is also a graph of the dimensionless function bo(~P)(ao) -1 in [2] (Fig. 8.13). The 

condition of  smallness of the Mach stem, b << a, is satisfied for slow time variation of the cylinder's radius ( ] v o [ <<  u o) 

and for low amplitudes of that variation ( l a  - a o l ao -1 <<  1). We can therefore solve Eq. (2) by the method of  successive 
approximations, taking for the f'trst approximation the equation 

b ~ BI(~)  = (a + bo(~))(sin ~)  ~+1 • 

x [1 + (~o .~in ~)~("o + ~o co.~ ~)-211/2 r~(bo(~), a, ~,). 
(8) 

The right side of Eq. (8) is a known function, since bo(~) has been found in [3], the forms of a(t) and v 0 = da/dt  are given 

by the conditions of  the problem, and the relationship between t and ~ is given by Eq. (2). The second approximation for b 

is obtained by substituting b = B t into the right side of (7). 

Using the method of  successive approximations to solve (7) thus reduces the approximate determination of b[t(~), ~] 

to a problem of differentiation with respect to ~ of functions that are known at each step. 
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